CBS62logoNEW2013_blue_final_header_White wwj950-sm2011b 971-ticket-35smb 35h_CBSSportsRad_Detroit

Looking Through The ‘Glass Transition’ On An Ultrafast Time Scale

View Comments
This photo-illustration depicts glass as it appears when it is heated nearly to the "glass transition temperature," when it is simultaneously composed of fluid, flowing regions and solid-like, rigid domains. Image courtesy of Kevin Kubarych and Matthew Ross, University of Michigan

This photo-illustration depicts glass as it appears when it is heated nearly to the “glass transition temperature,” when it is simultaneously composed of fluid, flowing regions and solid-like, rigid domains. Image courtesy of Kevin Kubarych and Matthew Ross, University of Michigan

ANN ARBOR — When chemists look at a drinking glass filled with water and a few ice cubes, it’s not clear to them whether the glass is more like the water or the ice.

Glass is one of civilization’s most valuable and versatile materials. To scientists, it’s also one of the most intriguing, because it displays properties of both solids and liquids.

Glass is a non-crystalline solid that transforms into a liquid when it’s heated to the so-called glass-transition temperature. When glass approaches this critical temperature — which is between 970 to 1,100 degrees Fahrenheit for the most common type of glass — it is simultaneously composed of fluid, flowing regions and solid-like, rigid domains.

For decades, scientists have been trying to understand exactly how glass behaves, at the molecular level, as it approaches the transition temperature. Now a research group led by University of Michigan chemist Kevin J. Kubarych has applied ultrafast spectroscopy to observe the fastest molecular motions of a liquid hovering just above its glass transition temperature.

“Progress in demystifying the glass transition can have a wide impact in many other fields, including predicting optical and mechanical properties of polymers and understanding crowded cellular environments of living organisms,” said Kubarych, an assistant professor of chemistry.

Working with UM chemistry graduate students John King and Matthew Ross, Kubarych found that even on the time scale of picoseconds (1 picosecond equals one millionth of a millionth of a second) there are signatures of “dynamic arrest” — the molecules become locked into their positions and long-range motion grinds to a near halt, though, structurally, the glass is indistinguishable from a liquid.

Typically, these effects are observed on much slower time scales of seconds, minutes, or even longer. A paper summarizing the research was published online April 9 in Physical Review Letters. King is the first author of the paper. Ross is also a doctoral student in the UM Applied Physics Program.

The work was supported by the National Science Foundation and the Camille and Henry Dreyfus Foundation.

To view the paper, visit http://prl.aps.org/abstract/PRL/v108/i15/e157401.

View Comments
blog comments powered by Disqus
Follow

Get every new post delivered to your Inbox.

Join 1,935 other followers