Watch CBS News

Dow Corning Sees Projected Global Growth of LED Lighting Linked to Adoption of Advanced Optical Silicones

MIDLAND -- The global LED market's average compound annual growth will be as high as 33 percent through 2016, according to analyst firm McKinsey & Co.

Midland-based Dow Corning -- a global leader in silicones, silicon-based technology and innovation -- expects that much of that growth will be contingent on the adoption of more advanced materials technologies.

While conventional LED materials enabled the start-up and initial development of the industry, higher performing products such as silicones can help solid-state lighting meet more challenging performance requirements for fast-growing applications like streetlights, office illumination and architectural lighting.

"Dow Corning's global lighting customers are concerned that emerging LED applications are quickly pushing conventional LED materials – such as glass, epoxies and plastics – to their practical limits," said Eric Peeters, vice president of Dow Corning Electronic Solutions. "Consequently, as designs of LEDs and LED lamps and luminaires rapidly become more sophisticated, optical silicone technology is generating tremendous interest from OEMs along the entire LED value chain and opening new horizons of reliability and applications."

Four major industry-wide LED trends that are fueling this interest in silicone innovation include:

* The drive toward higher efficiency -- Although LEDs are among the most efficient of all light sources, the market is continuously pushing toward higher and higher efficiency products. Offering advanced optical performance and superior moldability vs. traditional materials, silicones provide exceptional clarity and new design possibilities for primary and secondary optics that squeeze more lumens out of every watt.

* Rising LED temperatures -- As designers are increasing the amount of driving current in LEDs and are decreasing the overall size of the lighting fixture, the operating temperatures for emerging LEDs are approaching 150 degrees Centigrade and higher. Such temperatures can cause conventional epoxies and plastics to turn yellow and physically degrade over time. In contrast, silicones have demonstrated reliable optical and physical performance at temperatures reaching 200 degrees Centigrade and higher, which helps ensure next-generation LED sources can meet and exceed the lumen maintenance requirements of today's most challenging lighting applications.

* Demand for more design flexibility -- While conventional glass, polycarbonate and acrylic products were adequate for early LED designs, many new lighting applications are calling for architectures that are difficult to fabricate with traditional materials. The unique mechanical properties of silicone materials are driving broad new design possibilities for secondary optics, light pipes, light guides, white reflecting parts and remote phosphor components. The superior moldability of silicones enables LED architectures with more complex shapes, micro-scale optical structures, undercuts and thinner wall configurations that would be difficult or impossible to fabricate with either organic polymers or glass.

* Lower costs -- As LED manufacturers seek to deliver more lumens per dollar, many are looking to optical silicones to help minimize their products' total cost of ownership through improved performance and processing. More easily molded than glass or plastics, silicones offer unique options for consolidation of mechanical and optical LED, helping to reduce assembly operations. Plus, their lower molding temperature translates into lower energy consumption during LED manufacture. Lastly, the thermal and optical stability of silicones combined with their strong resistance to UV, chemicals and impact helps ensure LED light sources deliver consistent, reliable, high-quality illumination over the lifetime of the device.

"None of these emerging application demands represent a showstopper for the next-generation of LED lighting designs," Peeters said. "But the next wave of breakthrough solutions will only occur through close collaboration between designers, manufacturers and materials developers. Dow Corning owes its leadership position in this industry to its history of collaborative innovation, and its commitment to developing customer solutions that meet their most challenging application demands and help them compete and succeed."

View CBS News In
CBS News App Open
Chrome Safari Continue
Be the first to know
Get browser notifications for breaking news, live events, and exclusive reporting.